Lecture 028 - Confidence Intervals for the Variance and Standard Deviation of a Normal Population

Dylan Spicker

Confidence Intervals for the Variance and Standard Deviation of a Normal Population

Learning Objectives

1. Construct confidence intervals for the variance and standard deviation in normal populations.

The Sampling Distribution of the Variance

- We have seen that, when dealing with normal populations, \bar{X} follows a normal distribution.

The Sampling Distribution of the Variance

- We have seen that, when dealing with normal populations, \bar{X} follows a normal distribution.
- We have not yet considered the sampling distribution of the variance.

The Sampling Distribution of the Variance

- We have seen that, when dealing with normal populations, \bar{X} follows a normal distribution.
- We have not yet considered the sampling distribution of the variance.
- We can take it as fact that

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

The Sampling Distribution of the Variance

- We have seen that, when dealing with normal populations, \bar{X} follows a normal distribution.
- We have not yet considered the sampling distribution of the variance.
- We can take it as fact that

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

- Recall that the χ_{ν}^{2} distribution is a gamma family distribution!

The Sampling Distribution of the Variance

- We have seen that, when dealing with normal populations, \bar{X} follows a normal distribution.
- We have not yet considered the sampling distribution of the variance.
- We can take it as fact that

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

- Recall that the χ_{ν}^{2} distribution is a gamma family distribution!
- This allows us to use the same procedures as before, with χ^{2} critical values.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right]
$$

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right]
$$

- Important: Some sources use different notation for $\chi_{\alpha / 2}^{2}$. In particular, if $A \sim \chi_{\nu}^{2}$ then $P\left(A \leq \chi_{\alpha, \nu}^{2}\right)=\alpha$ in this course.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right]
$$

- Important: Some sources use different notation for $\chi_{\alpha / 2}^{2}$. In particular, if $A \sim \chi_{\nu}^{2}$ then $P\left(A \leq \chi_{\alpha, \nu}^{2}\right)=\alpha$ in this course.
- Note, the χ^{2} distribution is asymmetric so the end points are not equidistant from S^{2}.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right]
$$

- Important: Some sources use different notation for $\chi_{\alpha / 2}^{2}$. In particular, if $A \sim \chi_{\nu}^{2}$ then $P\left(A \leq \chi_{\alpha, \nu}^{2}\right)=\alpha$ in this course.
- Note, the χ^{2} distribution is asymmetric so the end points are not equidistant from S^{2}.
- This result assumes a normally distributed population.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right] .
$$

- Important: Some sources use different notation for $\chi_{\alpha / 2}^{2}$. In particular, if $A \sim \chi_{\nu}^{2}$ then $P\left(A \leq \chi_{\alpha, \nu}^{2}\right)=\alpha$ in this course.
- Note, the χ^{2} distribution is asymmetric so the end points are not equidistant from S^{2}.
\rightarrow This result assumes a normally distributed population.
- If we want an interval for s, we can simply square root the end points.

Constructing the Confidence Intervals

- We can use the critical values $\chi_{\alpha / 2, n-1}^{2}$ and $\chi_{1-\alpha / 2, n-1}^{2}$ to form the interval.
- Doing this has us construct an interval of the form

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2, n-1}^{2}}\right] .
$$

- Important: Some sources use different notation for $\chi_{\alpha / 2}^{2}$. In particular, if $A \sim \chi_{\nu}^{2}$ then $P\left(A \leq \chi_{\alpha, \nu}^{2}\right)=\alpha$ in this course.
- Note, the χ^{2} distribution is asymmetric so the end points are not equidistant from S^{2}.
\rightarrow This result assumes a normally distributed population.
- If we want an interval for s, we can simply square root the end points.

Summary

- The sample variance has a χ_{ν}^{2} sampling distribution.
- The degrees of freedom are given by $\nu=n-1$.
- The sampling distribution can be inverted to obtain confidence intervals for the variance and standard deviation.

