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Confidence Intervals for the Variance and Standard Deviation of
a Normal Population



Learning Objectives

1. Construct confidence intervals for the variance and standard
deviation in normal populations.
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follows a normal distribution.
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» We have seen that, when dealing with normal populations, X
follows a normal distribution.

» We have not yet considered the sampling distribution of the
variance.

» We can take it as fact that

(n—1)8 2

2 ~ Xnp-1-
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» Recall that the y2 distribution is a gamma family distribution!

» This allows us to use the same procedures as before, with y? critical
values.
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Summary

» The sample variance has a x? sampling distribution.

» The degrees of freedom are given by v = n — 1.

» The sampling distribution can be inverted to obtain confidence
intervals for the variance and standard deviation.
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